然而,由于各种交通/道路结构方案以及人类驾驶员行为的长时间分布,自动驾驶的感应,感知和本地化取得了重大进展,因此,对于智能车辆来说,这仍然是一个持开放态度的挑战始终知道如何在有可用的传感 /感知 /本地化信息的道路上做出和执行最佳决定。在本章中,我们讨论了人工智能,更具体地说,强化学习如何利用运营知识和安全反射来做出战略性和战术决策。我们讨论了一些与强化学习解决方案的鲁棒性及其对自动驾驶驾驶策略的实践设计有关的具有挑战性的问题。我们专注于在高速公路上自动驾驶以及增强学习,车辆运动控制和控制屏障功能的整合,从而实现了可靠的AI驾驶策略,可以安全地学习和适应。
translated by 谷歌翻译
每种算法选择旨在为给定的问题实例和给定的性能标准推荐一种或几种合适的算法,这些算法有望在特定设置中表现良好。选择是经典的离线完成的,使用有关问题实例或在专用功能提​​取步骤中从实例中提取的功能的公开可用信息。这忽略了算法在优化过程中积累的有价值的信息。在这项工作中,我们提出了一种替代性的在线算法选择方案,我们每次算法选择该方案。在我们的方法中,我们使用默认算法启动优化,在经过一定数量的迭代之后,从该初始优化器的观察到的轨迹中提取实例功能,以确定是否切换到另一个优化器。我们使用CMA-E作为默认求解器测试这种方法,以及六个不同优化器的投资组合作为可切换的潜在算法。与其他关于在线人均算法选择的最新工作相反,我们使用在第一个优化阶段累积的信息进行了第二个优化器。我们表明,我们的方法的表现优于静态算法选择。我们还基于探索性景观分析和分别对CMA-ES内部状态变量的探索性景观分析和时间序列分析进行比较。我们表明,这两种功能集的组合为我们的测试用例提供了最准确的建议,该建议是从可可平台的BBOB功能套件和Nevergrad平台的Yabbob Suite中获取的。
translated by 谷歌翻译
到目前为止,景观感知算法选择方法主要依靠景观特征提取作为预处理步骤,而与投资组合中优化算法的执行无关。这引入了许多实用应用的计算成本的重要开销,因为通过采样和评估手头的问题实例提取和计算功能,与优化算法在其搜索轨迹中所执行的功能类似。如Jankovic等人所建议的。 (EVOAPPS 2021),基于轨迹的算法选择可以通过从求解器在优化过程中对求解器进行采样和评估的点来计算景观特征来规避昂贵的特征提取问题。以这种方式计算的功能用于训练算法性能回归模型,然后在该模型上构建每运行算法选择器。在这项工作中,我们将基于轨迹的方法应用于五种算法的投资组合。我们研究了在固定的功能评估预算之后预测不同算法性能的情况下,性能回归和算法选择模型的质量和准确性。我们依靠使用相同功能评估的上述预算的一部分计算出的问题实例的景观特征。此外,我们考虑一次在求解器之间切换一次的可能性,这要求它们要热身启动,即当我们切换时,第二求解器继续使用第一个求解器收集的信息来继续适当地初始化优化过程。在这种新背景下,我们展示了基于轨迹的每算法选择的有前途的表现,并启动了温暖。
translated by 谷歌翻译
自我监督可能会在下游任务中提高模型性能。但是,没有理性的方法可以选择产生最适应性最适应的模型的自我监督目标。在这里,我们研究了从可穿戴传感器产生的每日时间序列数据上的这个问题,用于检测流感样疾病(ILI)的开始。我们首先表明,使用自我监督的学习来预测下一天的时间序列值允许我们学习丰富的表示,这可以适应执行准确的ILI预测。其次,我们对三种不同的自我监督目标进行了实证分析,以评估其对伊利预测的适应性。我们的结果表明,在睡眠期间预测第二天休息的心率或床上床提供了更好的ILI预测表示。这些调查结果增加了以前的工作,展示了自我监督学习从活动数据的实际应用,以改善健康预测。
translated by 谷歌翻译